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The number of alien species introduced outside their native range is increasing 

unabated with major impacts on biodiversity and human society. Predicting the 

spread of alien species is therefore an urgent challenge. Most predictions use models 

of a species’ ecological niche to identify climatically suitable areas for invasion, but 

recent analyses suggest that the reliability of these predictions may be limited. Here, 

using the global alien avifauna, we demonstrate an alternative approach for 

predicting the spread of alien species based on the environmental resistance of the 

landscape. This approach does not require any information on the ecological niche of 

the invading species, and instead uses gradients of biotic similarity among native 

communities in the invaded region to predict the most likely routes of spread. We 

show that environmental resistance predicts current patterns of spread better than a 

null model of random diffusion or a model based on climate matching to the species’ 

native range. Applying this approach to simulate future patterns of spread reveals 

major differences in projected invasion risk across regions, shaped both by proximity 

to existing invasion hotspots as well as broad-scale gradients in the environmental 

resistance to spread. Our results show how environmental resistance may provide a 

general and complementary approach for predicting risks of species’ invasions that 

can be rapidly deployed even when information on the niche or the identity of 

potential invaders is unknown. 
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Invasive alien species represent a growing threat to biodiversity, food security, human 

health and economies1–4. Reliably predicting the spread of alien species is therefore an 

urgent challenge. Most predictions rely on estimating the environmental suitability for 

invasion using models of the invading species’ native ecological niche5–8. However, the 

success of ecological niche models in predicting the spread of alien species is mixed9–11. 

While there is some evidence that species’ niches may be conserved across their native and 

alien distributions (e.g.5), other studies suggest that predictions of alien spread using 

ecological niche models are unreliable (e.g.12,13). In particular, alien species often fail to 

spread into conditions occupied in their native range, while at the same time expanding into 

novel climates12–18. The potential limited accuracy of ecological niche models represents a 

major challenge for managing risks from biological invasions, and motivates the search for 

novel approaches for predicting the spread of alien species.  

Starting from any point on the Earth’s surface, the biotic similarity of ecological 

communities typically declines with geographic distance, a trend so fundamental it has 

been referred to as the ‘first principle of biogeography’19,20. Patterns of distance decay in 

compositional similarity can be quantified in various ways, but perhaps most relevant for 

understanding the spread of invasive alien species is simply the proportion of the native 

species at a focal site occurring at every other location in the landscape21(see Methods). 

When mapped, this reveals striking geometric patterns, reflecting the environmental 

gradients and geographical barriers responsible for limiting the spread of species at any 

given site22–24(Fig. 1).  

Forty years ago, Eduardo Rapoport21 proposed that taking the complement of biotic 

similarity would provide an index of ‘environmental resistance’ (i.e. environmental 

https://paperpile.com/c/YkJlBf/5jWZ+mWOF+J97j+NnHw
https://paperpile.com/c/YkJlBf/YohV+3KVm+CjBK+LgF7
https://paperpile.com/c/YkJlBf/ofyX+fO2C+b0PP
https://paperpile.com/c/YkJlBf/YohV
https://paperpile.com/c/YkJlBf/hztft+lbdUg
https://paperpile.com/c/YkJlBf/lbdUg+gVeU4+hq7Yy+hztft+0Cj7U+9866Z+V2sH
https://paperpile.com/c/YkJlBf/VRGZ0+m0vu
https://paperpile.com/c/YkJlBf/Poojw
https://paperpile.com/c/YkJlBf/WfS2+YgUM+ueHI
https://paperpile.com/c/YkJlBf/Poojw
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resistance = 1 - biotic similarity), that could be used to predict how a newly introduced 

species would spread through the landscape. Specifically, having successfully established at 

a focal site, an alien species would have a lower probability of spreading to areas with low 

biotic similarity to the focal site (i.e. higher environmental resistance) compared to areas 

with high biotic similarity (i.e. lower environmental resistance). This environmental 

resistance model disregards all information on species’ ecological niches and instead 

assumes that the biotic similarity of native species communities provides a convenient 

proxy for suitability. Thus, environmental resistance distills into a single catch-all variable, 

the potentially many measured and unmeasured environmental factors that interact, in 

potentially complex ways, to limit the geographic expansion of species at a particular 

location. Despite its attractive simplicity, the ability of Rapoport’s environmental resistance 

model to predict the spread of alien species has, to our knowledge, never been tested.  

Here we apply the environmental resistance model to the global alien avifauna, that 

includes 339 species distributed across all continents except Antarctica25. Birds provide an 

ideal study system because comprehensive information is available on (i) the geographic 

range of each alien species, (ii) the sites where these alien populations established and thus 

the likely sources of spread26,27, and (iii) the native distributions of all birds (n = 9993)28 

from which environmental resistance across sites (100km grid cells) can be mapped 

globally (Fig. 1). Using this dataset, we simulate the spread of alien species from known 

sites of establishment, with patterns of invasion determined by the environmental 

resistance of the landscape, and assess the ability of this model accurately to predict the 

current alien distribution of each species. Because some level of overlap between the 

observed and simulated alien distribution would be expected simply by chance, we 

https://paperpile.com/c/YkJlBf/MkztR
https://paperpile.com/c/YkJlBf/aiJQo+lD8v
https://paperpile.com/c/YkJlBf/bBbSy
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compare the predictions of the environmental resistance model to a null model in which 

patterns of invasion are unrelated to environmental resistance and arise purely through 

random dispersal. Finally, we compare the accuracy of the environmental resistance model 

to a suite of models where spread is guided by estimates of climatic suitability (Extended 

Data Table. 1). After demonstrating that environmental resistance more accurately predicts 

patterns of spread than models based on random dispersal or climate suitability, we apply 

the environmental resistance model to provide a novel global assessment of the future risk 

to species assemblages from the spread of alien birds.  

 

Results and Discussion 

Predicting patterns of alien spread 

We simulate the geographic range of alien species using a spreading dye algorithm29,30. 

Starting from the known locations where alien populations established, species 

sequentially invade adjacent cells, stopping when the observed alien range size is reached 

(Methods). We conduct multiple repeat simulations (n = 100) and quantify predictive 

accuracy as the percentage of the observed range that is overlapped by the simulated 

distribution. Our first aim is therefore to assess the ability to predict patterns of spread 

given the observed alien range size attained by each species. We subsequently go on to 

assess models’ ability to predict the extent of spread. 

 In our null model of random dispersal, alien species invade adjacent cells with equal 

probability and spread is constrained only by the boundaries of the landmasses30. On 

average across species, the random dispersal model predicts patterns of alien range spread 

with an accuracy of 67% (median±15% SD) (Fig. 2a). Most null models assume that in the 

https://paperpile.com/c/YkJlBf/wkaG6+zOn5
https://paperpile.com/c/YkJlBf/zOn5
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absence of any environmental influence species would be randomly scattered across 

space31. However, the relatively high overlap between observed and simulated ranges in 

our null model highlights the importance of incorporating a realistic process of dispersal 

when generating null expectations of alien distributions32,33.  

 We next model the effects of environmental resistance on spread by preferentially 

selecting for invasion those cells with a lower environmental resistance (i.e. higher biotic 

similarity) to the site/s of alien population establishment (Fig. 2b). Incorporating this effect 

of environmental resistance resulted in a consistent and significant increase in the overlap 

between simulated and observed ranges (Fig. 2e, paired t-test, t = 11.9, p<0.001, n = 283), 

with average model predictive accuracy increasing to 78% (median±19% SD). Across our 

dataset, 65% of species are better fit by the environmental resistance model, compared to 

29% of species where model predictive accuracy is tied and only 6% of species where the 

random dispersal model fits better. At the level of individual species, the null model of 

random dispersal can be statistically rejected (at 5% significance level) across 21% of 

species. Many alien species, however, have small geographic ranges and there may be 

insufficient power to reject the null model. Thus, when we consider only the most 

widespread alien species (i.e. upper 10% quantile), a model of random dispersal can be 

rejected in favor of the environmental resistance model across 67% of species. This 

consistent improvement in predictive accuracy shows that patterns of alien range spread 

cannot be explained by random dispersal alone. Instead, we find that species preferentially 

invade sites with lower environmental resistance (i.e. greater native biotic similarity) to 

sites of population establishment, giving rise to present day alien bird distributions that 

depart markedly from random expectations. 

https://paperpile.com/c/YkJlBf/KgBzW
https://paperpile.com/c/YkJlBf/438nY+lDUrs
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We next compare the predictions of the environmental resistance model to ‘climate-

matching’ models in which the probability of invading adjacent cells is determined directly 

by climate suitability, estimated as the similarity to the mean conditions occupied in the 

native species range (Fig. 2c)6,27. We calculate suitability by generating a multidimensional 

climate space described by four independent climate axes, and simulate alien range spread 

under all possible combinations of these climate axes (n = 15 combinations, Methods). We 

then select those climate axes that best predict spread (climate-matchingOptimal, Extended 

Data Table 1), allowing the identity of these axes to vary across species and across different 

fragments of each species’ global alien range (e.g. alien species introduced to multiple 

continents) (Extended Data Fig. 1).  

This climate-matchingOptimal model has an average predictive accuracy of 75% 

(median±14% SD), corresponding to a small but significant decrease in predictive 

performance compared to the environmental resistance model (paired t-test, t = 3.22, 

p=0.001, n = 283). Across our dataset, 47% of species are better fit by the environmental 

resistance model, compared to 31% of species where model predictive accuracy is tied, and 

22% of species where the climate-matchingOptimal model fits better. The environmental 

resistance model significantly outperforms the climate-matchingOptimal model in 12% of 

species, compared to only 5% of species where it performs significantly worse (Fig. 2f). 

Thus, despite the much greater complexity of the climate-matchingOptimal model, predictive 

accuracy is lower than the environmental resistance model in which the spread of all 

species is governed by a single variable. 

In practice the climate-matchingOptimal model has limited applicability because the 

climatic axes limiting alien range expansion are rarely known a priori. The standard 

https://paperpile.com/c/YkJlBf/3KVm+lD8v
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approach is instead to identify the climate variables that best predict the native range of 

each species, and to assume that these variables also limit spread in the alien range34, what 

we here term the climate-matchingNative model (Fig. 2d, Extended Data Table 1). Under 

these more restrictive assumptions, the predictive accuracy of the climate-matchingNative 

model (median = 65±17% SD) is substantially lower than the environmental resistance 

model (paired t-test, t = 13, p<0.001, n = 283). In fact, predictive accuracy of the climate-

matchingNative model is lower than a null model of random dispersal which assumes that 

patterns of alien range spread are entirely independent of local climate conditions. Thus, 

while our climate-matching models demonstrate that climate is a strong determinant of 

alien range expansion, in practice estimates of climate suitability do not provide accurate 

predictions of alien spread, because different climatic variables are responsible for limiting 

the species’ native and alien range (Extended Data Fig. 1). 

One possible explanation for why the climate-matching models provides less 

accurate predictions than the environmental resistance model, is that species may undergo 

niche shifts during the invasion process so that the average conditions occupied in the 

native range do not accurately reflect climate suitability (e.g.13). This cannot explain our 

results, however, because we obtained a similar predictive accuracy when fitting a ‘climate-

resistance’ model in which we quantify suitability for invasion relative to the climate 

conditions at the sites of alien population establishment rather than the native range 

(Extended Data Table 1, Extended Data Fig. 2). Taken together, our results suggest that 

environmental resistance may provide a more accurate index of invasion risk than 

estimates of climate suitability (Extended Data Fig. 3). 

 

https://paperpile.com/c/YkJlBf/7AOS
https://paperpile.com/c/YkJlBf/lbdUg
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Predicting the extent of alien spread 

To test whether the environmental resistance model can also predict the extent of spread, 

we estimate the area each alien species would be expected to occupy, assuming that range 

expansion is limited by a given threshold of environmental resistance (Fig. 3a). Under this 

model, variation in alien range size is explained by variation in the rate at which biotic 

similarity declines with distance from the sites where each species was established (Fig. 1). 

We first assess the correspondence between predicted and observed alien range size by 

quantifying the error around the ordinary least squares (OLS) regression line, 

systematically repeating this assessment for different thresholds of environmental 

resistance. Using the threshold of environmental resistance that minimises error (ER = 

0.05, Extended Data Fig. 4a), predicted and observed alien range sizes are positively 

associated (Fig. 3b). Thus, as expected, alien species have attained larger range sizes where 

biotic similarity declines gradually with distance from sites of establishment, compared to 

places where biotic similarity declines steeply with distance. However, model explanatory 

power is relatively low (r2 = 0.19) and across 59% of alien species the extent of spread is 

underpredicted (Fig. 3b). Indeed, while the observed range limits of many species 

correspond to a low environmental resistance threshold (e.g. ER ≤ 0.05 for 45% of species), 

many other species have spread into cells with a much higher environmental resistance 

relative to the sites where they first established (Fig. 3a, Extended Data Fig. 4b). Clearly, 

any single environmental resistance threshold can only partially predict the extent of alien 

range expansion.  

Given that the threshold of environmental resistance corresponding to the limits of 

alien range expansion appears to vary across species, for managing invasion risks it may be 
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more appropriate to identify a threshold of environmental resistance beyond which few, if 

any, species are likely to spread. Using a quantile regression (99% percentile) to define the 

upper boundary of the relationship between predicted and observed alien range size, we 

identify an environmental resistance threshold of ER = 0.49 as one possible ‘safe limit’ (Fig. 

3c, Extended Data Fig. 4c). This threshold corresponds to the boundary beyond which 

native biotic similarity declines by approximately 50% (Fig. 1) and accurately predicts the 

maximum range size that alien species have attained, with few species (2%) expanding 

beyond this threshold (Fig. 3c). While it is possible that some species may transgress this 

threshold in the future, our analysis across all alien birds—some of which have been 

established for centuries—suggests that such risks are probably small over the coming 

decades. Thus, while a given threshold of environmental resistance provides only limited 

accuracy in predicting the current range size of any alien species, it may nevertheless be 

used to define a safe limit beyond which risks of invasion are likely to be minimal.  

 

Predicting global risks of invasion 

Using this proposed safe limit, we map the risk of invasion from the continued spread of 

currently established alien birds. Present day patterns of alien species richness are 

primarily driven by historical patterns of species’ introductions, with hotspots of alien 

richness occurring throughout North America, Europe, Australia, New Zealand and Japan, 

as well as on numerous islands, major urban areas and trade hubs (Fig. 4a)25. Patterns of 

risk from the potential future spread of currently established aliens partially reflect 

proximity to these existing hotspots of alien species richness (Fig. 4b). However, risk is also 

strongly shaped by gradients in environmental resistance, resulting in patterns of spread 

https://paperpile.com/c/YkJlBf/MkztR
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that differ strongly from patterns expected under random dispersal. For instance, Sub-

Saharan Africa emerges as a hotspot of risk from potential future spread, but the Kalahari 

and Congo Basin remain relative coldspots due to the high environmental resistance of 

these ecosystems relative to the sites where aliens have established. In the Middle East and 

Central Asia, deserts and high-altitude plateaus remain at low risk, while adjacent 

mountain ranges (e.g. Himalayas) with low environmental resistance relative to the sites 

where aliens have established, emerge as corridors for potential invasion (Fig. 4b).  

The spatial patterns of risk that we identify from the continued spread of 

established aliens differ markedly from recent risk assessments focussing primarily on 

earlier stages in the invasion pathway, involving the initial transport and establishment of 

species 35,36. Integrating our environmental resistance model with predictions from these 

earlier stages in the invasion pathway is a critical next step (e.g. 37), as the regions most at 

risk may change over time as more alien bird populations are introduced and 

established2,25. It is also important to note that our projected patterns of risk are based on 

current gradients of environmental resistance and may change radically as species 

distributions shift in response to future climate change. 

 

Prospects and opportunities of the environmental resistance model  

Here, we have shown that spatial patterns in community similarity provide a novel metric 

of environmental resistance that can be used to predict how alien species are likely to 

spread through the landscape, finally confirming Eduardo Rapoport’s hypothesis that had 

remained untested for four decades21. The ability of environmental resistance to predict 

the spread of alien species in the complete absence of information on the ecological niche 

https://paperpile.com/c/YkJlBf/4saVv+W3VFY
https://paperpile.com/c/YkJlBf/1YGO
https://paperpile.com/c/YkJlBf/mWOF+MkztR
https://paperpile.com/c/YkJlBf/Poojw
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of the species involved is striking, and suggests that this could provide a valuable tool in 

predicting invasion risk. Environmental resistance may be particularly useful for predicting 

the spread of species where information on their distribution is insufficient to estimate 

their ecological niche, including many tropical insects with poorly known native 

distributions but that have the potential to become major pests3. In fact, our results suggest 

that as long as the sites where species were introduced can be reliably identified (often 

major trade hubs and cities), then the environmental resistance model can be used to 

predict the locations most at risk from invasion, even when the identity of potential 

invaders are unknown. The ability to provide rapid and general assessments of invasion 

risk across regions given such minimal information could be highly valuable, 

complementing existing niche modelling approaches which require detailed geographic or 

physiological data for individual species. 

What though is the explanation for the high predictive ability of the environmental 

resistance model? In theory, communities with similar compositions to sites of alien 

establishment could causally promote invasion, perhaps because certain native species 

facilitate both the establishment and spread of aliens. While this scenario is possible, we 

think it more likely that the association is indirect, and that relative biotic similarity 

predicts spread simply because it provides a more comprehensive metric of environmental 

suitability than direct estimates based on the climate. In particular, species’ ranges may be 

constrained by a potentially large number of abiotic, biotic and historical factors, and this 

complexity may not be captured by the small set of climatic variables typically used to 

model species’ distributions12. In contrast, patterns of decay in biotic similarity effectively 

integrate these many factors into a single, comprehensive ‘catch-all’ variable. The relatively 

https://paperpile.com/c/YkJlBf/J97j
https://paperpile.com/c/YkJlBf/hztft
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small but consistent improvement in predictive accuracy of the environmental resistance 

model compared to the climate-matchingOptimal model provides some support for this 

explanation. But our results suggest that a more fundamental reason is that the identity of 

the key climate variables predicting species’ distributions often varies between regions, 

making it difficult to transfer models of climate suitability based on a species’ native 

range10. This explains why the climate-matchingNative model—which assumes the same 

climate axes limit both the native and alien range—performs so poorly compared to the 

climate-matchingOptimal model, which allows the identity of these axes to vary. 

Unfortunately, the identity of the climate axes limiting alien spread may only become 

identifiable once invasion has already occurred, thereby limiting the practical applicability 

of such climate matching models. The environmental resistance model side-steps this 

problem by using the patterns of decay in biotic similarity in the invaded region to predict 

how alien species are likely to spread. 

We found that the relationship between environmental resistance and the extent of 

range spread is triangular (Fig. 3c). Alien species occurring in regions with high 

environmental resistance are correctly predicted to have small geographic ranges, whereas 

species occurring in regions with low environmental resistance can have large or small 

geographic ranges. These differences in range size could reflect a number of factors, 

including differences in residence time, propagule pressure, dispersal ability and niche 

breadth, all of which may lead to variation in the rate or time available for spread6,38,39. 

Analysis of how these, as well as other factors, may modulate the ability of the 

environmental resistance model to predict spread is an important avenue for further 

exploration. While additional information beyond environmental resistance will clearly be 

https://paperpile.com/c/YkJlBf/fO2C
https://paperpile.com/c/YkJlBf/uufn2+vI7IF+3KVm
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necessary to predict the range size that an alien species will attain at any particular point in 

time, our results show that environmental resistance can be used to identify those regions 

at potential risk of invasion, as well as safe limits beyond which spread is unlikely (Fig. 3c). 

To our knowledge, this is the first study to test the ability of environmental 

resistance to predict the spread of alien species, and our analysis raises a number of 

questions. While environmental resistance provides a more accurate predictor of alien 

spread than a climate-matching model or assuming random dispersal, the accuracy of 

predictions varies across species (Fig. 2c). What then are the conditions under which 

environmental resistance performs well or less well in predicting alien spread? Here we 

have predicted patterns of spread in the alien avifauna based on the native distribution of 

all birds, but what about organism groups for which native distributions are less well 

known? For instance, could the spread of invasive plants be predicted from patterns of 

biotic similarity of birds? Could the spread of invasive insect pests (e.g.3) be predicted from 

patterns of biotic similarity of their vertebrate or plant hosts? Would incorporating 

information on functional traits or phylogenetic relatedness into metrics of biotic similarity 

further improve predictions of spread compared to models that consider only species 

identity? Finally, how does environmental resistance perform at the finer spatial 

resolutions that are more relevant to conservation practitioners and land managers? With 

the number of alien species increasing unabated2, addressing these questions are priorities 

for further research. Reliably predicting risks of future species invasions would benefit 

from a diverse set of tools that use different assumptions, data types and methodologies to 

model how species spread through the environment. Our results suggest that 

environmental resistance may provide an important addition to the ecologist’s toolbox.  

https://paperpile.com/c/YkJlBf/J97j
https://paperpile.com/c/YkJlBf/mWOF
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Fig. 1. Patterns of environmental resistance. Environmental resistance (1 - biotic 

similarity) is shown for selected sites in (a) the Amazon, (b) the Sahel and (c) Siberia 

(indicated by arrows) based on the native distributions of all birds (n = 9,993 species). 

From each of these sites, the pairwise compositional similarity to all other cells was 

calculated (see Methods). Hotter colours indicate a higher similarity to the focal location 

(i.e.  a higher proportion of focal cell species present at a site) and lower environmental 
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resistance to spread. The red contour indicates an environmental resistance of 0.5 i.e. 50% 

loss of biotic similarity from the focal site.  
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Fig. 2. Predicting the spread of alien birds. (a-d) Observed (red) and predicted spread 

for a single alien species (Carpodacus mexicanus). Hotter colors indicate a higher 

probability of invasion across n = 100 simulations under the (a) random dispersal, (b) 

environmental resistance and (c-d) climate-matching models. Climate-matching was 

calculated using the optimal combination of climate axes identified for the (c) alien 

(climate-matchingOptimal) and (d) native (climate-matchingNative) species range. Ov indicates 

the median predictive accuracy (i.e. % of invaded cells correctly predicted) across n=100 

replicate simulations. (e-g) Predictive accuracy across species under the environmental 

resistance and competing models. Points above the 1:1 line indicate a higher predictive 

accuracy of the environmental resistance model. Colors indicate whether the 

environmental resistance model predicts spread significantly better (red) or worse than 

(blue) than the competing model based on the 95% confidence interval in Ov scores of the 

competing model. Point size is proportional to alien range size. Of all established alien 
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species (n = 339), only those that have spread beyond cells of initial establishment were 

simulated (n = 283).  
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Fig. 3. Predicting the extent of spread across alien ranges. (a) Observed (red) and 

predicted spread for a single alien species (Carpodacus mexicanus) under different 

environmental resistance (ER) thresholds. ER thresholds < 0.3 are not visible at this scale. 

(b-c) The relationship between predicted and observed range size (number of 100km grid 

cells) assuming a threshold of (b) ER = 0.05 and (c) ER = 0.49 (see Extended Data Fig. 4a,c). 

Fitted lines indicate the (b) least squares and (c) quantile regression (0.99 percentile) of 

predicted against observed range size. Red regions indicate ranges that are under-

predicted. For all n = 339 alien species, range size was calculated for individual fragments 

of species ranges separately (n = 1704) because variation in total species range size is 

dominated by variation in the number of introduced populations (Extended Data Fig. 5).  
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Fig. 4. Global risks of invasion from the spread of alien birds. (a) current richness of 

alien birds (n = 339 species) and (b) risk of invasion from the spread of current alien birds 

assuming an environmental resistance threshold of ER = 0.49 (see Extended Data Fig. 4c), 

equivalent to an approximately 50% decline in native biotic similarity (see Fig. 1). Grey 

regions represent areas where no aliens are (a) currently present or (b) predicted to 

spread into.  
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Methods 

Data 

Expert-drawn extent of occurrence range maps of current alien distributions were 

obtained from the Global Avian Invasions Atlas (GAVIA)25,26. GAVIA represents the most 

comprehensive dataset on the distribution and introduction history of alien species for any 

major group of organisms, including information on the introduction of n = 971 bird 

species, n = 362 of which have established alien populations. For each alien species with a 

mapped distribution, we extracted from GAVIA the latitude and longitude coordinates of 

each introduction event that is known to have successfully established. Expert-drawn 

extent of occurrence maps of native breeding ranges for all bird species (n = 9,993) were 

obtained from BirdLife International28. These expert range maps represent the most 

comprehensive data on species’ distributions currently available, which is essential for a 

globally complete and unbiased characterization of compositional similarity among 

communities40. 

To quantify environmental-resistance and to allow the use of cell-based simulations, 

we extracted species’ polygon range maps onto an equal-area grid (Behrmann projection) 

with a cell resolution of 96.486 km41. We used a grid resolution of ~100km as this is the 

finest resolution at which expert polygon range maps can be analysed without incurring 

substantial false presences42. We identified the grid cells within each alien species’ range 

where alien populations were introduced and established. Where multiple establishment 

events occurred in a single grid cell these were lumped. 

To generate environmental resistance surfaces for modelling range spread, we 

generated a matrix of the biotic similarity between each pair of cells based on species’ 

https://paperpile.com/c/YkJlBf/MkztR+aiJQo
https://paperpile.com/c/YkJlBf/bBbSy
https://paperpile.com/c/YkJlBf/ZbFj
https://paperpile.com/c/YkJlBf/QaSkZ
https://paperpile.com/c/YkJlBf/FmalQ
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native distributions. For focal cell i, the biotic similarity of cell j was calculated as the 

proportion of species present in cell i that are also present in cell j21,24,43. This asymmetric 

measure is more appropriate than symmetric beta-diversity metrics which also take into 

account the species present in cell j but absent from cell i (e.g. Jaccard or Sørensen index)20, 

because here we are only interested in the potential of species to spread from cell i to j 

rather than the reverse. Environmental resistance was then calculated as: environmental 

resistance = 1 - biotic similarity. Thus, for cell j, an environmental resistance value of 0 with 

respect to focal cell i, indicates that all species present in cell i are also present in cell j. An 

environmental resistance value of 1 indicates that none of the species present in cell i are 

present in cell j. We do not include the distribution of alien species when calculating 

environmental resistance because this would be testing a different hypothesis, namely that 

the spread of an alien species can be predicted by the spread of other, earlier arriving alien 

species. 

In addition to environmental resistance, we tested the extent to which range spread 

is predictable based on the similarity between local climate conditions and (i) the mean 

conditions occupied in a species’ native range or (ii) at the site of alien population 

establishment. We downloaded data for a number of climatic variables at 1km resolution 

from WorldClim version v1.444 and then calculated the mean conditions within each 100km 

grid cell. We used a standard set of variables previously identified as important correlates 

of species’ range limits in birds30,45: mean annual temperature (°C) (Bio1), annual 

precipitation (mm) (Bio12), mean diurnal temperature range (°C) (Bio2), isothermality 

(°C) (Bio3), temperature seasonality (°C) (Bio4), temperature annual range (°C) (Bio7) and 

precipitation seasonality (mm) (Bio15). To derive a more limited set of spatially-

https://paperpile.com/c/YkJlBf/eQI1+Poojw+ueHI
https://paperpile.com/c/YkJlBf/m0vu
https://paperpile.com/c/YkJlBf/gNFt7
https://paperpile.com/c/YkJlBf/3s0vz+zOn5
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independent climate axes we performed a principal component (PC) analysis and retained 

the first four axes which collectively described 97.5% of the variation in climate (Extended 

Data Table 2). These PC climate axes were rescaled to between 0 and 1, thereby assuming 

that a proportional change in each climate axis would have an equivalent effect on invasion 

probability in our model. Cells lacking environmental data (usually small islands) were 

excluded from the grid. Excluding these cells resulted in a total of n = 339 alien species with 

distributions represented on our grid and that therefore could be modelled. All data 

processing and analyses were conducted in the R statistical programming language v446. 

 

Simulating range spread 

Of the n = 339 alien species, n = 283 species have spread beyond the initial grid cells where 

they established. For this subset of species, we simulated range expansion using a 

spreading dye algorithm. Starting from the cell/s of known population establishment 

events, each species could sequentially invade unoccupied adjacent cells in any of the four 

cardinal directions (i.e. sharing an edge with an occupied cell). Where there were multiple 

sites of establishment, spread was simultaneously seeded from each of these cells. The 

process of range spread was repeated until the observed range size was reached. We note 

that species have been spreading for different periods of time and our simulations thus aim 

to predict the spatial patterns of spread rather than the rate of spread. Many species have 

alien ranges divided into multiple, geographically disjunct fragments (e.g. where they have 

been introduced to different continents). We identified separate range fragments by 

building a graph object describing the connectivity between grid cells using the ‘graph’ 

package v1.66 47 and then identifying the disconnected subgraphs in the species range (i.e. 

https://paperpile.com/c/YkJlBf/Vdut
https://paperpile.com/c/YkJlBf/iKLJ
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those sharing no adjacent cells) using the ‘components’ function in the ‘igraph’ package 

v1.2.548. For species consisting of multiple fragments, we preserved the observed size and 

number of fragments by stopping spread when the observed size of each fragment was 

reached and by preventing fragments from merging together (i.e. in the simulation, cells 

adjacent to those occupied by one simulated fragment could not be invaded by another 

simulated fragment of the same species)30. Where information on the location of initial 

establishment was unavailable, range expansion was seeded from a single cell selected at 

random from within the observed alien range or for each fragment of the range. 

            For each of the n cells available for invasion, the probability of invasion P(I) for cell i 

was calculated as, 

  

𝑃(𝐼)𝑖 = (𝐸𝑅𝑖  + 1)−µe 

          Equation 1 

 

Where ERi is the environmental resistance value of cell i with respect to the cell where the 

alien population was first established. A constant of value 1 is added to ERi to ensure a 

positive number when ERi = 0. The parameter µ is a positive number indicating the degree 

of determinism in range spread (Extended Data Fig. 6a). When µ is large, cells with low 

environmental resistance are much more likely to be selected for invasion. When µ is small, 

cells are selected for invasion with a similar probability regardless of their environmental 

resistance. Here, we use a value of µ = 30, representing a scenario with strong determinism 

(Extended Data Fig. 6a)30. When µ = 0, this model reduces to a null model of random 

diffusion, in which cells are selected for invasion with an identical probability (Extended 

Data Fig. 6a).   

https://paperpile.com/c/YkJlBf/sTwj
https://paperpile.com/c/YkJlBf/zOn5
https://paperpile.com/c/YkJlBf/zOn5
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To ensure our results were not contingent on our choice of µ = 30, we re-ran our 

environmental resistance model using different values of µ from 0.2 to 1,000 (Extended 

Data Fig. 6b) 30. As expected, decreasing values of µ below 30 (i.e. models with weaker 

determinism), causes the predictive power of the model to decrease, with model 

performance converging towards that of the random dispersal model (i.e. µ = 0) (Extended 

Data Fig. 6b). By contrast, increasing µ above 30 only resulted in only a small increase in 

predictive accuracy (Extended Data Fig. 6b). Thus, our results are robust to the choice of µ 

and confirm that patterns of alien spread are highly deterministic and strongly shaped by 

environmental resistance. 

We extended the above model to consider scenarios in which the probability of 

invasion is determined by climate suitability. We simulated spread where the probability of 

invasion, P(I), for cell i was calculated as, 

 

𝑃(𝐼)𝑖  = 1 − ∏ 1 − (|𝐶𝑦 − 𝐿𝑖𝑦|  + 1)−µ𝑦4
𝑦=1       

Equation 2 

 

the product of invasion probabilities across each climate axis y. For each climate axis (n = 4 

axes), we assume that the invasion probability declines with the absolute distance between 

the local conditions in cell i (Liy) and the mean climate conditions (Cy) across the grid cells 

occupied by the species’ native range. This climate matching model has previously been 

shown to be a strong predictor of establishment success and the spread extent of alien 

birds 6,27. For each climate axis, we set µy = 0 (no effect of that axis) or µy = 30 (strong effect 

of that axis), thus generating n = 15 unique combinations (i.e. excluding the case were µy = 

https://paperpile.com/c/YkJlBf/zOn5
https://paperpile.com/c/YkJlBf/3KVm+lD8v
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0 for all climate axes which corresponds to the model of random dispersal). From these 15 

combinations we generated two ‘climate-matching models’.  

First, for each alien species we identified the combination of climate axes best 

predicting alien spread (climate-matchingOptimal). For alien species with multiple disjunct 

range fragments, we used the optimal combination of climate axes for each fragment. This 

model represents the optimal, but probably unrealistic scenario, in which the identity of 

the climate variables limiting the spread of an alien species at a site is known without error 

and does not need to be inferred from the native geographic range. 

Second, for each alien species we selected the combination of climate axes best 

predicting spread of the native geographic range (climate-matchingNative). To identify the 

climate axes best predicting the native range, we used an identical simulation procedure to 

that used to model alien ranges, simulating the species’ native range using each 

combination of climate axes outlined above (n = 15 combinations). We seeded the native 

range simulations using a randomly selected cell from the native range (or each native 

range fragment), stopping spread when the observed native range size was reached. 

Having identified the combination of climate axes with the highest predictive power for a 

species’ native range, we then used this same combination of climate axes to simulate that 

species’ alien range. The climate-matchingNative model thus assumes that the same set of 

climate variables are responsible for limiting both the native and alien geographic range.  

The environmental resistance model assumes that the suitability of a site for 

invasion increases with the biotic similarity to the site/s where an alien species is 

established. In contrast, the climate-matching model assumes that the suitability of a site 

for invasion increases with climatic similarity to the mean conditions in the native range. 
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To provide a more direct comparison to the environmental resistance model, we 

implemented a ‘climate-resistance model’ where the suitability of a site for invasion 

increases with climatic similarity to the conditions at the site/s where an alien species 

established. In practice, this was done by replacing Cy in Equation 2 with the climate 

conditions at the site where each alien population was established. Biologically, this 

climate-resistance model may represent a scenario in which an invading species rapidly 

shifts its ecological niche to match the conditions at the site of establishment13. For the 

climate-resistance model we conducted two sets of simulations: using either the optimal 

combination of climate axes for predicting the spread of each alien range fragment 

(climate-resistanceOptimal) or using the combination of climate axes best predicting the 

spread of the native range (climate-resistanceNative). 

All models used to predict alien dispersal are summarised in Extended Data Table 1. 

 

Quantifying model predictive accuracy 

For each model of range spread (random dispersal, climate-matchingOptimal, climate-

matchingNative, climate-resistanceOptimal, climate-resistanceNative) we performed n = 100 

replicate simulations. For each simulation, we quantified predictive accuracy as the 

proportional spatial overlap (Ov) between the simulated and observed range (i.e. 

proportion of cells where the species is present that are invaded in the simulation) and 

then calculated the median and 95% confidence interval (CI) in Ov scores across 

simulations. We compared the accuracy of models in three ways. First, we used a paired t-

test to compare species Ov scores between the environmental resistance model and each 

competing model. Second, we calculated the number of species where each model performs 

https://paperpile.com/c/YkJlBf/lbdUg
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best (Extended Data Fig. 3). Third, for each species we tested whether the environmental 

resistance model performs significantly better or worse than the competing model, based 

on the 95% confidence in Ov scores of the competing model.    

 

Predicting the extent of range spread  

For each site of alien population establishment, we identified all grid cells falling within a 

given threshold of environmental resistance relative to the focal cell, and then used the 

‘components’ function in the ‘igraph’ package v1.2.548 to identify the connected subset of 

cells (i.e. the cells that could be reached from the establishment site via spread through 

only adjacent cells). The number of connected cells indicates the potential size the alien 

range may attain if spread is prevented beyond a given environmental resistance threshold. 

For alien species (or fragments of alien species’ ranges) lacking information on sites of 

population establishment, we repeated this analysis using each cell in the range (or range 

fragment) as the potential source of spread and calculated the mean expected range size. 

To reduce computational burden, for alien ranges larger than 100 cells, we selected 100 

cells at random without replacement as potential sources of spread. In this analysis, the 

failure of species to spread beyond sites of establishment is informative and we therefore 

include all alien range fragments (n = 1704) and species (n = 339). Failure to include these 

range restricted species would underestimate the environmental resistance threshold that 

best predicts the spread of species.   

We systematically explored environmental resistance thresholds from 0 to 0.8 in 

increments of 0.01. We did not consider environmental resistance thresholds greater than 

0.8 because this was computationally expensive and our systematic search showed that a 

https://paperpile.com/c/YkJlBf/sTwj
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value of 0.8 already led to simulated ranges far larger than those observed. We identified 

the threshold of environmental resistance across species that minimises prediction error 

by fitting an ordinary least squares regression of simulated against observed range size and 

calculating the root-mean-square error (ErrorOLS). ErrorOLS penalizes over- and under-

prediction of range sizes equally, but for managing risks from species invasions, 

underpredicting the extent of spread is a more serious concern. We therefore also used the 

quantreg R package to fit a quantile regression (99% percentile), with the fitted line 

defining the upper boundary of the relationship between simulated and observed range 

size. We then calculated error as the mean absolute deviation between this fitted line and 

the line of unity (ErrorQuantile).   

We assessed the relationship between simulated and observed range size at the 

level of individual range fragments (n = 1704), rather than the total range size for each 

species (n = 339). This is because variation in total range size is dominated by differences 

in the number of populations that were established (i.e. propagule pressure)39 and thus the 

number of range fragments41. Our analysis shows that using total range size would lead to 

the appearance of a much stronger correspondence between observed and predicted range 

size (because both are driven by propagule pressure) and a lower estimate for ErrorQuantile, 

thus underestimating the area at risk of invasion compared to when individual range 

fragments are modelled (Extended Data Fig. 5).         

 

Projecting global risks of invasion 

Having identified an environmental resistance threshold of ER = 0.49 as a ‘safe limit’ beyond 

which spread is unlikely (Extended Data Fig. 4c), we proceeded to map the locations (i.e. grid 

https://paperpile.com/c/YkJlBf/vI7IF
https://paperpile.com/c/YkJlBf/QaSkZ
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cells) at potential risk of invasion from the spread of existing alien birds. A given cell may be 

at risk of invasion from the spread of a single species from multiple sources (i.e. when the 

alien species established at multiple sites and can spread from each of these) or from 

multiple species. For each grid cell i the total probability of invasion P(I) for a species 

spreading from n sources was quantified as, 

𝑃(𝐼)  = 1 − ∏ 1 − 𝑝𝑗

𝑛

𝑗=1

 

 

Where pj is the probability of invasion from source j. For each cell we then summed invasion 

probabilities P(I) across species to quantify the projected alien richness.  

 

Data availability  

Native and alien birds’ geographic range data is available from 

http://www.datazone.birdlife.org/ and The Global Avian Invasions Atlas (DOI: 

10.1038/sdata.2017.41) respectively.  

Code availability  

All custom scripts will be made available with the final version of this article. 

  

http://www.datazone.birdlife.org/
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Extended Data Table. 1. Models used to predict alien dispersal and their predictive 

accuracy across species. 

Model Description 
Median predictive 

accuracy 

Random 
dispersal 
 

Null model of spread, species invade adjacent cells with equal 
probability. 
 

67% (±15% SD) 
 

Environmental 
resistance 

Invasion probability increases with biotic similarity to the site of 
establishment. 

78% (±19% SD) 
  

Climate 
matchingOptimal 

 

 

 

Invasion probability increases with climatic similarity to mean 
conditions occupied in the native range. Alien ranges are simulated 
using the combination of climatic axes that best predict alien 
spread. The identity of these axes can vary across species and 
across different fragments of each species range. 

75% (±14% SD) 
 
 
 
 

Climate 
matchingNative 

 

 

 

 

Invasion probability increases with climatic similarity to mean 
conditions occupied in the native range. Alien ranges are simulated 
using the combination of climatic axes that best predict the native 
range of each species spread. The identity of these axes can thus 
vary across alien species but are held constant across the different 
fragments of an alien species range. 

65% (±17% SD) 
 
 
 
 
 

Climate 
resistanceOptimal 

 

 

 

 

 

Invasion probability increases with climatic similarity to the 
conditions occupied at the site of establishment. Alien ranges are 
simulated using the combination of climatic axes that best predict 
alien spread. The identity of these axes can vary across species and 
across different fragments of each species range.  
 
 

75% (±15% SD) 
 
 
 
 
 
 

Climate 
resistanceNative 

 

 

 

 

Invasion probability increases with climatic similarity to the 
conditions occupied at the site of establishment. Alien ranges are 
simulated using the combination of climatic axes that best predict 
the native range of each species spread. The identity of these axes 
can thus vary across alien species but are held constant across the 
different fragments of an alien species range. 

67% (±16% SD) 
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Extended Data Table. 2. Trait loadings for bioclimatic space and proportion of 

variance accounted for by each principal component axis. 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 

Bio1 0.437 -0.26 0.08 0.187 -0.836 -0.033 -0.033 

Bio2 -0.022 -0.634 0.499 -0.445 0.116 0.354 0.105 

Bio3 0.477 -0.163 0.196 -0.04 0.332 -0.751 0.18 

Bio4 -0.497 -0.009 -0.025 -0.102 -0.302 -0.266 0.761 

Bio7 -0.48 -0.148 0.054 -0.293 -0.222 -0.487 -0.61 

Bio12 0.319 0.404 -0.202 -0.814 -0.164 0.045 0.048 

Bio15 0.048 -0.564 -0.813 -0.079 0.104 -0.002 0.028 

Proportion of Variance 0.564 0.276 0.081 0.055 0.02 0.003 0.001 

Cumulative Proportion 0.564 0.84 0.92 0.975 0.996 0.999 1 

  



39 

Extended Data Fig. 1. The optimal combination of principal component climate axes 

predicting spread for native (rows) and alien (columns) ranges. For each alien species’ 

range fragment (n = 1278 fragments) the set of climate axes best predicting spread was 

identified, as well as the set of climate axes best predicting the native range. Each cell in the 

matrix defined by position (x,y), indicates the number of alien range fragments where x is 

the best model and y is the best model in the native range. Diagonal elements indicate cases 
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where the same set of climate axes limit spread in the native and alien range of a species. In 

cases where multiple sets of climate axes predicted spread equally well, fragments were 

assigned to multiple cells but weighted by the inverse of the number of ties. Thus, the sum 

of the entries in the matrix is equal to the total number of range fragments.  
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Extended Data Fig. 2. Patterns of environmental and climate distance. For three 

exemplar focal cells in the (a) Amazon, (b) Sahel and (c) Siberia (Fig. 1), environmental 

resistance and climate distance were calculated to all other cells. Environmental resistance 

is 1-biotic similarity, where biotic similarity is the proportion of species present in the focal 

cell that is also present in each other cell. Climate distance is the Euclidean distance in four-

dimensional climate space between the conditions in the focal cell and each other cell. 

Bivariate plots show the relationship between the climatic distance and environmental 

resistance of each cell relative to the focal cell, and these patterns are shown on the maps 

below.   
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Extended Data Fig. 3. The best fitting model across species. For each species,(n = 283), 

the model with the highest predictive accuracy for the species’ alien range was identified 

from the following models: random dispersal, environmental resistance model, climate 

matchingOptimal, climate matchingNative, climate resistanceOptimal, climate resistanceNative 

(Extended Data Table 1). Predictive accuracy was rounded to two decimal places before 

comparing models to prevent detecting marginal differences in accuracy. Where multiple 
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models had the same predictive accuracy, that species was assigned to multiple models but 

weighted by the inverse of the number of ties. Thus, the sum of the entries is equal to the 

total number of species.   
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Extended Data Fig. 4. Optimal environmental resistance (ER) thresholds for 

predicting the extent of alien spread at the level of species range fragments (n = 

1704). a, the root mean square error in mean predicted range size (ordinary least squares 

regression) under different environmental resistance thresholds; b, the optimal 

environmental resistance threshold for predicting the size of each alien range fragment; c, 

error in the upper boundary of predicted range size (quantile regression, 0.99 percentile) 
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under different environmental resistance thresholds. The ER threshold minimising error is 

shown (grey dashed line).  
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Extended Data Fig. 5. Predicted against observed range size for different 

environmental resistance thresholds. Red regions indicate range sizes that are under-

predicted. Lines indicate the quantile regression (0.99 percentile) of observed against 

predicted range size. Range size was calculated for individual fragments of species’ ranges 

(n = 1704 fragments, left column) or for total species range size (n = 339 species, right 

column).  
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Extended Data Fig. 6. The effects of µ on invasion and patterns of spread. a, relative 

probability of invasion as a function of environmental resistance for different values of µ; b, 

median predictive accuracy across species (n = 283) of the environmental resistance model 

under different values of µ. When µ is high (e.g. µ = 30), patterns of spread are strongly 

deterministic. When µ = 0, patterns of spread are independent of environmental resistance 

corresponding to the null model of random dispersal. Increasing µ above 30 only resulted 
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in a small increase in the median overlap scores across species. Therefore, µ = 30 

represents a highly deterministic scenario where further increases in µ result in minimal 

improvement in model predictive ability.  
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